Mastik: a Toolkit for

Microarchitectural Channel Attacks

Yuval Yarom, The University of Adelaide and Data61

—

First year computer science:

Von Neumann Architecture

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Computer Architecture course

ITLB |e
L1 Instruction Cache
Branch Instruction Fetch & PreDecode
'g Predictor X
o Instruction Queue
—
= l
e HOP Cache 4-Way Decode
A Jon Tor Joor Jwor [wor
AN »_111.rx
Allocation Queue
nop uop HOP uor
CDB [Reorder buffer
l poP l nor lyOP l Hor 1 HOP 1 LoP l LOP l;xOP
Q
go Ih:: Scheduler
Lﬁ nor uop HoP Hop HOP ropP LOP uor
= = 8 8
= g |3 |3 g |5
= al |8 [B] [B 2
8 :;' .3 .3 @
Execution Units
[osd Bt [i
£ |Load Buffer| [Store Buffer(
é‘ .“..m’ v v ¥
> DTLB STLB —
S 2 | L1DataCache —
=3 L2 Cache
3

The rest of the CS degree

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Programmers’ Model of Execution

o High Ie/;" lananacac

e Asymy
o Archit
e Focus
« CPUV

“%al Processing Unit

\
Control Unit

(In)Security lives and breathes in the
cracks between abstraction layers.

metic/Logic Unit

Execution

Thomas Dullien (@halvarflake)

Shared
Non-unifor

Dedicated
Uniform

uperscalar

CPU vs. Memory

Processor Memory
Speed Latency
1 MHz 500 ns

8*2600 MHz 63 ns

Bridging the gap ‘

Processor

Cache utilises locality to bridge

the gap i

e Divides memory into lines

k
o Stores recently used lines Cache
e In a cache hit, data is retrieved
from the cache
e In a cache miss, data is retrieved Vemory

from memory and inserted to
the cache

Cache Consistency

« Memory and cache can be in
Inconsistent states
« Rare, but possible

« Solution: Flushing the cache

contents

« Ensures that the next load is
served from the memory

Processor

Memory

FLUSH+RELOAD [YF14]

« FLUSH memory line
« Wait a bit

e Measure time to RELOAD
line
e slow-> no access
o fast-> access

e Repeat

Processor

Memory

10

The RSA Encryption System

» The RSA encryption is a public key cryptographic

scheme

ﬁey Generation:
* Select random primes p and ¢
* Calculate N = pq

» Compute d=e! mod ¢(N)
* (N, e) is the public key

k(p, g, d) is the private key

~

* Select a public exponent e(=65537)

A

[ck Memod v |

11

GnuPG 1.4.13 Exponentiation

x —1

for i <—|d|-1 downto 0 do

Operation X i d.

X «—x’enod G

The private

if (d, = n -

x =xC

key is

endif
done
return x

Example:
11°> mod 100 =
161,051 mod 100 = 51

encoded in

the sequence

of operations

12

Flush+Reload on GnuPG 1.4.13

Gnuplot window 0

""2 ﬂ*‘i\ak N /M

llll
— ——— A S S S S S a—"——
Ill‘n.“.llrl““ N
...llu.l!l]“-.’\ll.
. -——
C—— 2 2 TS
.
C X _X_X_X_%_ %% —F-¥9%"
| o =
L —
| gt T T
v =z
m SmTT—— -
——pamar —
g = >
2] ”.“J'
. ——
S ==
=
R L L L, e —
- [¥ ¥ ———
a o
m ~
-5 s
= —_———
—mn plpnggghey
S e = e A LRI ==
o
o
m

(s9]2A2) aw ssadoy

3500

3400

3300

3200

3100

3000

Time (samples)

3180.79, 156.326

13

The FLUSH+RELOAD Technique

e Leaks information on victim access to shared
memory.

« Spy monitors victim’s access to shared code
« Spy can determine what victim does
« Spy can infer the data the victim operates on

14

Set Associative Caches

« Memory lines map to cache

sets. Multiple lines map to
the same set.

« Sets consist of ways. A
memory line can be stored in
any of the ways of the set it
maps to.

« When a cache miss occurs,

one of the lines in the set is
evicted.

Memory

15

The Prime+Probe Attack [OSTO6] ‘

« Allocate a cache-sized memory

buffer N @
=

e Prime: fills the cache with the

contents of the buffer -

e Probe: measure the time to
access each cache set

e Slow access indicates victim access
to the set

« The probe phase primes the Memory
cache for the next round

16

Sample Victim: Data Rattle

volatile char buffer[4096];

int main(int ac, char sxxav) {
for (55) 4
for (int 1 = 0; 1 < 64000; i++)
buffer[800] += i;

for (int 1 = 0; 1 < 64000; i++)
buffer[1800] += i;

17

Cache Fingerprint of
the Rattle Program

Real Victim — AES

3
52
s3
#ifdef
/%
10
tl
t2
t3
/%
s@
sl
s2
s3
/%
10
tl
t2
t3
/%
s@

= GETU32(in + 8) ~ rk[2]:
= GETU32(in + 12) ~ rk[3];

FULL_UNROLL

=(e0[s0 >> 24

f=
= Ted 4]

= Te@[s2
= Te@[s3
round 2:
= Ted[tO
= Ted[tl
= Te@[t2
= Te@[t3
round 3:
= Te@[sO
= Te@[sl
= Te@[s2
= Te@[s3
round 4:
= Te@[tO

>>
>>
%/
>>
>>
>>
>>
%/
>>
>>
>>
>>
%/

>>

24]
24]

24]
24]
24]
24]

24]
24]
24]
24]

24]

> > > D > > >

> > > D

>

Tell(sl
Tell[(s2
Tell(s3
Tell[(s@

Tel[(t1
Tell[(t2
Tell[(t3
Tel[(to

Tell[(sl
Tell[(s2
Tel[(s3
Tell[(s@

Tel[(t1

>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
>>

>>

-

N

static const u32 Te@[256] = {
0xc66363a5U, 0xf87c7c84U, Oxee777799U, @xf67b7b8dU,
Oxfff2f20dU, Oxd66b6bbdU, @Oxde6f6fblU, ©x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a%9U, ©0x562b2b7dU,
Oxe7fefel9U, 0xb5d7d762U, ©x4dababeblU, @xec76769aU,
Ox8fcacad5U, 0x1f82829dU, ©x89c9c940U, @xfa7d7d87U,
OxeffafaldSu, @xb25959ebU, 0x8e4747c9U, Oxfbfofoebu,
Ox4ladadecU, 0xb3d4d467U, 0x5fa2a2fdU, @x45afafeal,
\\\» 0x239c9cbfU, @x53ad4a4f7U, 0xed4727296U, 0x9bc0c05bu,4///
16) & Oxff] ~ Te2[(t2 >> 8) & oxff] ~ Te3[t3 & oxff] ~ rk[8];
16) & Oxff] ~ Te2[(t3 >> 8) & Oxff] ~ Te3[to & oxff] ~ rk[9];
16) & Oxff] ~ Te2[(t@ >> 8) & oxff] ~ Te3[tl & oxff] ~ rk[10];
16) & Oxff] ~ Te2[(tl >> 8) & Oxff] ~ Te3[t2 & oxff] ~ rk[11];
16) & Oxff] ~ Te2[(s2 >> 8) & Oxff] ~ Te3[s3 & oxff] ~ rk[12];
16) & Oxff] ~ Te2[(s3 >> 8) & Oxff] ~ Te3[s0 & oxff] ~ rk[13];
16) & Oxff] ~ Te2[(s@ >> 8) & oOxff] ~ Te3[sl & oxff]l ~ rk[14];
16) & Oxff] ~ Te2[(sl1l >> 8) & Oxff] ~ Te3[s2 & oxff]l ~ rk[15];
16) & Oxff] ~ Te2[(t2 >> 8) & Oxff] ~ Te3[t3 & oxff] ~ rk[16];

19

AES T-table access

static const u32 Te@[256] = {
Oxc66363a5U, Oxf87c7c84U, 0@xee777799U, 0xf67b7b8dU,
Oxfff2f20dU, Oxd66b6bbdU, Oxde6f6fblU, @x91c5¢c554U,
0x60303050U, 0x02010103U, @xce6767a9u, ©@x562b2b7dU,

AvaTfafat10ll AVvhEATATAEDI] AvAdahahaill AvarTATAQAl]

~

/

-
sO0 = plaintext * key
t0 = TeO[s0>>24]

« Assume we know the plaintext and the index (s0>>24)
« We can recover the most significant byte of the key

20

Prime+Probe Attack on AES

s0
t0

plaintext * key
Te0[s0>>24]

« For many plaintexts do: Prime, Encrypt, Probe

o Calculate the average probe time of each cache set as a
function of the byte value

25

PP Attack on AES - Results

0.5
14 l.

0.4
12 |

0.3
10

f 0.2

- ..

' L

-0.2

o N E= (&)} «©
o

PP Attack on AES — More Results ‘

0.5
14

0.4
12

0.3

0.2
8

. E 1 01
4 0
2 - 4-01
0

-0.2

27

Other Techniques (a very partial list) ‘
e Evict+Time [OSTO6]
« Branch prediction [AKSO6,ERAP1S,...]
e L1-1 Prime+Probe [AciO7]
e LLC Prime+Probe [LYG+15,IES15]
e Flush+Flush [GMWM15]
e CacheBleed [YGH17]

« TLBleed [GRBG18]

e PortSmash [CBH+18]
‘ « SPOILER [IMB+19]

e OpenSSL

LOW Severity. This includes issues such as those that ... or hard to
exploit timing (side channel) attacks.
https://www.openssl.org/policies/secpolicy.html

o Attacks are easy, but at the same time
e Publications are terse — technical details are often omitted
e Generic tools do not exist

29

Mastik

« Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

« Original Aims
e Collate information on SC attacks

o Improve our understanding of the domain

» Provide somewhat-robust implementations of all known SC attack
techniques for every architecture

« Implementation of generic analysis techniques
e Reduce barriers to entry into the area
« Shift focus to cryptanalysis

30

Current Status

« Reasonably robust implementation of six attacks
e Prime+Probe on L1-D, L1-1 and L3
e Flush+Reload
e Flush+Flush
e Performance degradation

« Only Intel x86-64, on Linux and Mac (limited)
e x86-32 and limited ARM currently working in the lab

« Zero documentation, little testing

e Little user feedback

31

Mastik — Setup

#define NMONITOR 3)

C“ﬁ;p"i‘ﬂfgﬁ‘_’gfg5ﬁ,{ (Allocate a handler of a
eIl o ot attack

}; Tell handler what to /

int main(int ac, char mo/ 1

char xbinary = av/[1

Prepare space for results

fr_t fr = fr_prepar
- —prep ,

for (int i = @2 < NMONITOR; i++) {
uint64_t set = sym_getsymbolof
fr_monitor(fr, map_offset(binar
}

uint16 t xres = malloc(SAMPLES * NMONITOR x sizeof(uintl6 t));

for (int 1 = @; 1 < SAMPLES * NMONITOR ; i+= 4096/sizeof(uintlt t))
res[i] = 1;

fr_probe(fr, res);

ary, monitor[il]);
set));

32

Mastik — Attack

Run attack

int 1= fr_trace(fr, SAMPLES, res, SLOT, THRESHOLD, 500);

for (int 1 = 0; i < 1; i++) {
for (int j = @; j < NMONITOR; j++)
printf("sd ", res[i % NMONITOR + jl);
putchar('\n");
}

free(res);
fr_release(fr); Output results

33

No need to program ‘
FR-trace -s 2000 -c 100000 -f ./gpg \

-m mpih-mul.c:85 \
-m mpih-mul.c:271 \
-m mpih-div.c:356

—

Mastik - Demo

e Live Demo

Mastik - Future

« Open Source project —to be launched real soon

« More attack techniques
o CacheBleed
e Branch prediction attacks

e GUl interface
e Some analysis

36

Future: GUI Setugp

Search Code |

Source Code and Assembly List

Source Code file lineNum File lineNum Address Function Instr Param Comment Source File lineNum
cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); mpih-mu... 260 mpih-mul.c 85
mpih-mu... 262 mpih-mul.c 271
prodp|[size] =cy_limb; mpih-mu... 262 mpih-div.c 35
prodp++; mpih-mu... 263
for(i=1;i<size;i++) { mpih-mu... 252
} mpih-mu... 265
} mpih-mu... 265
mpih-mu... 270
mpih-mu... 270
void mpih-mu... 270
mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t... mpih-mu... 270
{ mpih-mu... 270
if(size&1){ mpih-m 271
* code below behave as if the size were even, and let it check For mpih-mu... 282
* odd size in the end. I.e., in essence move this code to the end. mpih-mu... 282
* Doing so would save us a recursive call, and potentially make the mpih-mu... 282
* stack grow a lot less. mpih-mu... 282
*/ mpih-mu... 282
mpi_size_t esize =size-1; /*evensize*/ mpih-mu... 282
mpi_limb_t cy_limb; mpih-mu... 285
mpih-mu... 285
MPN_SQR_N_RECURSE(prodp, up, esize, tspace); mpih-mu... 285
cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); mpih-mu... 286
prodplesize + esize] = cy_limb; mpih-mu... 287
cy_limb =mpihelp_addmul_1(prodp + esize, up, size, up[esize]); mpih-mu... 288 i ... 271 0xdf799 mpih_sq... mov -0x34(%r...
mpih-mu... 290
prodplesize +size] = cy_limb; mpih-mu... 290
MPN_COPY(prodp, tspace, hsize); mpih-mu... 342
cy=mpihelp_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsi... mpih-mu... 342
if(cy) mpih-mu... 342
mpihelp_add_1 (prodp +size, prodp +size, size, 1); mpih-mu... 342
} mpih-mu... 342
} mpih-mu... 342
mpi_size_t hsize =size >> 1; mpih-mu... 293
MPN_SQR_N_RECURSE(prodp +size, up + hsize, hsize, tspace); mpih-mu... 301
—— if(mpihelp_cmp(up + hsize, up, hsize) >=0) mpih-mu... 306

37

mpihelp_sub_n(prodp, up + hsize, up, hsize); mpih-mu... 307

Future: GUI output

3
0 & o B [[E3
16530 results
29.53% active

X limits: 2440 2939
Y limits: 0 300

Threshold: [100

0+ B B [

Doubloon

16530 results

29.53% active

X limits: 2435 2963

Y limits:) 300
Threshold: (100

@ Threshold binary

@ Interpolate missing values

Access time (cycles)

[Threshold: 100
7 Set 3

w
3
o
>
<
o
E
=
7
a
41
o
O
<

2700
Time slots

2700
Time slots

Future - analysis

e Live demo...

39

