
1

Mastik: a Toolkit for
Microarchitectural Channel Attacks

Yuval Yarom, The University of Adelaide and Data61

2

First year computer science:
Von Neumann Architecture

3

Computer Architecture course

4

The rest of the CS degree

5

• High level languages
• Asymptotic rather than concrete performance
• Architecture is a minor topic
• Focus on abstraction
• CPU Vendors’ interests

Programmers’ Model of Execution

Abstract Concrete
Hardware Dedicated Shared
Memory Uniform Non-uniform
Execution Serial Superscalar

(In)Security lives and breathes in the
cracks between abstraction layers.

Thomas Dullien (@halvarflake)

7

CPU vs. Memory

Processor
Speed

1 MHz

8*2600 MHz

Memory
Latency

500 ns

63 ns

8

Bridging the gap

Cache utilises locality to bridge
the gap
•Divides memory into lines
• Stores recently used lines

• In a cache hit, data is retrieved
from the cache

• In a cache miss, data is retrieved
from memory and inserted to
the cache

Processor

Memory

Cache

9

Cache Consistency

•Memory and cache can be in
inconsistent states
•Rare, but possible
•Solution: Flushing the cache

contents
• Ensures that the next load is

served from the memory

Processor

Memory

Cache

10

FLUSH+RELOAD [YF14]

•FLUSH memory line
•Wait a bit
•Measure time to RELOAD

line
• slow-> no access
• fast-> access
•Repeat

Processor

Memory

Cache

11

The RSA Encryption System
• The RSA encryption is a public key cryptographic

scheme

C = Me mod N

M

CM = Cd mod N

Key Generation:
• Select random primes p and q
• Calculate N = pq
• Select a public exponent e(=65537)
• Compute d=e-1 mod φ(N)
• (N, e) is the public key
• (p, q, d) is the private key

12

Operation x i di
1 2 101

Square 1 2 101
reduce 1 2 101
Multiply 11 2 101
reduce 11 2 101
Square 121 1 101
reduce 21 1 101
Square 441 0 101
reduce 41 0 101
Multiply 451 0 101
reduce 51 0 101

GnuPG 1.4.13 Exponentiation

Example:
115 mod 100 =

161,051 mod 100 = 51

x ⟵1
for i ⟵|d|-1 downto 0 do

x ⟵x2 mod n
if (di = 1) then

x = xC mod n
endif

done
return x

The private
key is

encoded in
the sequence
of operations

!!!

13

Flush+Reload on GnuPG 1.4.13

14

The FLUSH+RELOAD Technique

• Leaks information on victim access to shared
memory.

• Spy monitors victim’s access to shared code
• Spy can determine what victim does
• Spy can infer the data the victim operates on

15

Set Associative Caches

•Memory lines map to cache
sets. Multiple lines map to
the same set.

• Sets consist of ways. A
memory line can be stored in
any of the ways of the set it
maps to.

•When a cache miss occurs,
one of the lines in the set is
evicted.

Memory

Ways

Sets

16

The Prime+Probe Attack [OST06]

•Allocate a cache-sized memory
buffer

•Prime: fills the cache with the
contents of the buffer

•Probe: measure the time to
access each cache set
• Slow access indicates victim access

to the set
• The probe phase primes the

cache for the next round
Memory

17

Sample Victim: Data Rattle

18

Cache Fingerprint of
the Rattle Program

19

Real Victim – AES

20

AES T-table access

• Assume we know the plaintext and the index (s0>>24)
• We can recover the most significant byte of the key

s0 = plaintext ^ key
t0 = Te0[s0>>24]

25

Prime+Probe Attack on AES

•For many plaintexts do: Prime, Encrypt, Probe
•Calculate the average probe time of each cache set as a

function of the byte value

s0 = plaintext ^ key
t0 = Te0[s0>>24]

26

PP Attack on AES - Results

27

PP Attack on AES – More Results

28

Other Techniques (a very partial list)

•Evict+Time [OST06]
•Branch prediction [AKS06,ERAP18,…]
•L1-I Prime+Probe [Aci07]
•LLC Prime+Probe [LYG+15,IES15]
•Flush+Flush [GMWM15]
•CacheBleed [YGH17]
•TLBleed [GRBG18]
•PortSmash [CBH+18]
•SPOILER [IMB+19]

29

•OpenSSL
LOW Severity. This includes issues such as those that … or hard to
exploit timing (side channel) attacks.

https://www.openssl.org/policies/secpolicy.html

•Attacks are easy, but at the same time
•Publications are terse – technical details are often omitted
•Generic tools do not exist

30

Mastik

•Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

•Original Aims
•Collate information on SC attacks
• Improve our understanding of the domain
• Provide somewhat-robust implementations of all known SC attack

techniques for every architecture
• Implementation of generic analysis techniques

•Reduce barriers to entry into the area
• Shift focus to cryptanalysis

31

Current Status

•Reasonably robust implementation of six attacks
• Prime+Probe on L1-D, L1-I and L3
• Flush+Reload
• Flush+Flush
• Performance degradation

•Only Intel x86-64, on Linux and Mac (limited)
• x86-32 and limited ARM currently working in the lab

• Zero documentation, little testing
• Little user feedback

32

Mastik – Setup

Allocate a handler of a
Flush+Reload attack

Tell handler what to
monitor

Prepare space for results

33

Mastik – Attack

Run attack

Output results

34

No need to program

FR-trace –s 2000 –c 100000 –f ./gpg \
–m mpih-mul.c:85 \
–m mpih-mul.c:271 \
–m mpih-div.c:356

35

Mastik - Demo
• Live Demo

36

Mastik - Future
• Open Source project – to be launched real soon
• More attack techniques
• CacheBleed
• Branch prediction attacks

• GUI interface
• Some analysis

37

Future: GUI Setup

38

Future: GUI output

39

Future - analysis
• Live demo…

