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The rest of the CS degree
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CPU vs. Memory

Processor Memory
Speed Latency
1 MHz 500 ns

8*2600 MHz 63 ns




Bridging the gap ‘

Processor

Cache utilises locality to bridge

the gap i

e Divides memory into lines

k
o Stores recently used lines Cache
e In a cache hit, data is retrieved
from the cache
e In a cache miss, data is retrieved Vemory

from memory and inserted to
the cache




Cache Consistency

« Memory and cache can be in
Inconsistent states
« Rare, but possible

« Solution: Flushing the cache

contents

« Ensures that the next load is
served from the memory

Processor

Memory



FLUSH+RELOAD [YF14]

« FLUSH memory line
« Wait a bit

e Measure time to RELOAD
line
e slow-> no access
o fast-> access

e Repeat

Processor

Memory
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The RSA Encryption System

» The RSA encryption is a public key cryptographic

scheme

ﬁey Generation:
* Select random primes p and ¢
* Calculate N = pq

» Compute d=e! mod ¢(N)
* (N, e) is the public key

k(p, g, d) is the private key

~

* Select a public exponent e(=65537)

A

[ck Memod v |

11




GnuPG 1.4.13 Exponentiation

x —1

for i <—|d|-1 downto 0 do

Operation X i d.

X «—x’enod G

The private

if (d, = n -

x =xC

key is

endif
done
return x

Example:
11°> mod 100 =
161,051 mod 100 = 51

encoded in

the sequence

of operations
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Flush+Reload on GnuPG 1.4.13

Gnuplot window 0
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The FLUSH+RELOAD Technique

e Leaks information on victim access to shared
memory.

« Spy monitors victim’s access to shared code
« Spy can determine what victim does
« Spy can infer the data the victim operates on
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Set Associative Caches

« Memory lines map to cache

sets. Multiple lines map to
the same set.

« Sets consist of ways. A
memory line can be stored in
any of the ways of the set it
maps to.

« When a cache miss occurs,

one of the lines in the set is
evicted.

Memory

15




The Prime+Probe Attack [OSTO6] ‘

« Allocate a cache-sized memory

buffer N @
=

e Prime: fills the cache with the

contents of the buffer -

e Probe: measure the time to
access each cache set

e Slow access indicates victim access
to the set

« The probe phase primes the Memory
cache for the next round
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Sample Victim: Data Rattle

volatile char buffer[4096];

int main(int ac, char sxxav) {
for (55) 4
for (int 1 = 0; 1 < 64000; i++)
buffer[800] += i;

for (int 1 = 0; 1 < 64000; i++)
buffer[1800] += i;
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Cache Fingerprint of
the Rattle Program




Real Victim — AES
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static const u32 Te@[256] = {
0xc66363a5U, 0xf87c7c84U, Oxee777799U, @xf67b7b8dU,
Oxfff2f20dU, Oxd66b6bbdU, @Oxde6f6fblU, ©x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a%9U, ©0x562b2b7dU,
Oxe7fefel9U, 0xb5d7d762U, ©x4dababeblU, @xec76769aU,
Ox8fcacad5U, 0x1f82829dU, ©x89c9c940U, @xfa7d7d87U,
OxeffafaldSu, @xb25959ebU, 0x8e4747c9U, Oxfbfofoebu,
Ox4ladadecU, 0xb3d4d467U, 0x5fa2a2fdU, @x45afafeal,
\\\» 0x239c9cbfU, @x53ad4a4f7U, 0xed4727296U, 0x9bc0c05bu,4///
16) & Oxff] ~ Te2[(t2 >> 8) & oxff] ~ Te3[t3 & oxff] ~ rk[ 8];
16) & Oxff] ~ Te2[(t3 >> 8) & Oxff] ~ Te3[to & oxff] ~ rk[ 9];
16) & Oxff] ~ Te2[(t@ >> 8) & oxff] ~ Te3[tl & oxff] ~ rk[10];
16) & Oxff] ~ Te2[(tl >> 8) & Oxff] ~ Te3[t2 & oxff] ~ rk[11];
16) & Oxff] ~ Te2[(s2 >> 8) & Oxff] ~ Te3[s3 & oxff] ~ rk[12];
16) & Oxff] ~ Te2[(s3 >> 8) & Oxff] ~ Te3[s0 & oxff] ~ rk[13];
16) & Oxff] ~ Te2[(s@ >> 8) & oOxff] ~ Te3[sl & oxff]l ~ rk[14];
16) & Oxff] ~ Te2[(sl1l >> 8) & Oxff] ~ Te3[s2 & oxff]l ~ rk[15];
16) & Oxff] ~ Te2[(t2 >> 8) & Oxff] ~ Te3[t3 & oxff] ~ rk[16];
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AES T-table access

static const u32 Te@[256] = {
Oxc66363a5U, Oxf87c7c84U, 0@xee777799U, 0xf67b7b8dU,
Oxfff2f20dU, Oxd66b6bbdU, Oxde6f6fblU, @x91c5¢c554U,
0x60303050U, 0x02010103U, @xce6767a9u, ©@x562b2b7dU,

AvaTfafat10ll AVvhEATATAEDI] AvAdahahaill AvarTATAQAl]

~

/

-
sO0 = plaintext * key
t0 = TeO[s0>>24]

« Assume we know the plaintext and the index (s0>>24)
« We can recover the most significant byte of the key
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Prime+Probe Attack on AES

s0
t0

plaintext * key
Te0[s0>>24]

« For many plaintexts do: Prime, Encrypt, Probe

o Calculate the average probe time of each cache set as a
function of the byte value
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PP Attack on AES - Results
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PP Attack on AES — More Results ‘
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Other Techniques (a very partial list) ‘
e Evict+Time [OSTO6]
« Branch prediction [AKSO6,ERAP1S,...]
e L1-1 Prime+Probe [AciO7]
e LLC Prime+Probe [LYG+15,IES15]
e Flush+Flush [GMWM15]
e CacheBleed [YGH17]

« TLBleed [GRBG18]

e PortSmash [CBH+18]
‘ « SPOILER [IMB+19]




e OpenSSL

LOW Severity. This includes issues such as those that ... or hard to
exploit timing (side channel) attacks.
https://www.openssl.org/policies/secpolicy.html

o Attacks are easy, but at the same time
e Publications are terse — technical details are often omitted
e Generic tools do not exist
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Mastik

« Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

« Original Aims
e Collate information on SC attacks

o Improve our understanding of the domain

» Provide somewhat-robust implementations of all known SC attack
techniques for every architecture

« Implementation of generic analysis techniques
e Reduce barriers to entry into the area
« Shift focus to cryptanalysis
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Current Status

« Reasonably robust implementation of six attacks
e Prime+Probe on L1-D, L1-1 and L3
e Flush+Reload
e Flush+Flush
e Performance degradation

« Only Intel x86-64, on Linux and Mac (limited)
e x86-32 and limited ARM currently working in the lab

« Zero documentation, little testing

e Little user feedback
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Mastik — Setup

#define NMONITOR 3 )

C“ﬁ;p"i‘ﬂfgﬁ‘_’gfg5ﬁ,{ ( Allocate a handler of a
eIl o ot attack

}; Tell handler what to /

int main(int ac, char mo/ 1

char xbinary = av/[1

Prepare space for results

fr_t fr = fr_prepar
- —prep ,

for (int i = @2 < NMONITOR; i++) {
uint64_t set = sym_getsymbolof
fr_monitor(fr, map_offset(binar
}

uint16 t xres = malloc(SAMPLES * NMONITOR x sizeof(uintl6 t));

for (int 1 = @; 1 < SAMPLES * NMONITOR ; i+= 4096/sizeof(uintlt t))
res[i] = 1;

fr_probe(fr, res);

ary, monitor[il]);
set));
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Mastik — Attack

Run attack

int 1= fr_trace(fr, SAMPLES, res, SLOT, THRESHOLD, 500);

for (int 1 = 0; i < 1; i++) {
for (int j = @; j < NMONITOR; j++)
printf("sd ", res[i % NMONITOR + jl);
putchar('\n");
}

free(res);
fr_release(fr); Output results
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No need to program ‘
FR-trace -s 2000 -c 100000 -f ./gpg \

-m mpih-mul.c:85 \
-m mpih-mul.c:271 \
-m mpih-div.c:356

—




Mastik - Demo

e Live Demo




Mastik - Future

« Open Source project —to be launched real soon

« More attack techniques
o CacheBleed
e Branch prediction attacks

e GUl interface
e Some analysis
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Future: GUI Setugp

Search Code |

Source Code and Assembly List

Source Code file lineNum File lineNum  Address  Function Instr Param Comment Source File  lineNum
cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); mpih-mu... 260 mpih-mul.c 85
mpih-mu... 262 mpih-mul.c 271
prodp|[size] =cy_limb; mpih-mu... 262 mpih-div.c 35
prodp++; mpih-mu... 263
for(i=1;i<size;i++) { mpih-mu... 252
} mpih-mu... 265
} mpih-mu... 265
mpih-mu... 270
mpih-mu... 270
void mpih-mu... 270
mpih_sqr_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t... mpih-mu... 270
{ mpih-mu... 270
if(size&1){ mpih-m 271
* code below behave as if the size were even, and let it check For mpih-mu... 282
* odd size in the end. I.e., in essence move this code to the end. mpih-mu... 282
* Doing so would save us a recursive call, and potentially make the mpih-mu... 282
* stack grow a lot less. mpih-mu... 282
*/ mpih-mu... 282
mpi_size_t esize =size-1;  /*evensize*/ mpih-mu... 282
mpi_limb_t cy_limb; mpih-mu... 285
mpih-mu... 285
MPN_SQR_N_RECURSE( prodp, up, esize, tspace); mpih-mu... 285
cy_limb = mpihelp_addmul_1( prodp + esize, up, esize, up[esize] ); mpih-mu... 286
prodplesize + esize] = cy_limb; mpih-mu... 287
cy_limb =mpihelp_addmul_1( prodp + esize, up, size, up[esize] ); mpih-mu... 288 i ... 271 0xdf799  mpih_sq... mov -0x34(%r...
mpih-mu... 290
prodplesize +size] = cy_limb; mpih-mu... 290
MPN_COPY(prodp, tspace, hsize); mpih-mu... 342
cy=mpihelp_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsi... mpih-mu... 342
if(cy) mpih-mu... 342
mpihelp_add_1 (prodp +size, prodp +size, size, 1); mpih-mu... 342
} mpih-mu... 342
} mpih-mu... 342
mpi_size_t hsize =size >> 1; mpih-mu... 293
MPN_SQR_N_RECURSE(prodp +size, up + hsize, hsize, tspace); mpih-mu... 301
—— if( mpihelp_cmp( up + hsize, up, hsize) >=0) mpih-mu... 306

37

mpihelp_sub_n(prodp, up + hsize, up, hsize); mpih-mu... 307




Future: GUI output
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Future - analysis

e Live demo...
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